Audit report for
BGACT Token

Prepared By: - Kishan Patel Prepared for: Bluegrace Energy Bolivia

Prepared On: - 12/12/2025.

1|Page All Rights Reserved

Table of contents

1. Disclaimer

2. Introduction

3. Project information

4. List of attacks checked

5. Severity Definitions

6. Good Coding Standards

7. Critical vulnerabilities in code
8. Medium vulnerabilities in code
9. Low vulnerabilities in code

10. Summary

2|Page All Rights Reserved

THIS AUDIT REPORT WILL CONTAIN CONFIDENTIAL
INFORMATION ABOUT THE SMART CONTRACT AND
INTELLECTUAL PROPERTY OF THE CUSTOMER AS WELL AS
INFORMATION ABOUT POTENTIAL VULNERABILITIES OF THEIR
EXPLOITATION.

THE INFORMATION FROM THIS AUDIT REPORT CAN BE USED
INTERNALLY BY THE CUSTOMER OR IT CAN BE DISCLOSED
PUBLICLY AFTER ALL VULNERABILITIES ARE FIXED - UPON THE
DECISION OF THE CUSTOMER.

Blockchain - Auditor Qualifications:

Mr. Kishan Patel - (kishanpatel412) - is a renowned and highly respected expert
in the field of blockchain, tokenization and security crypto development, including
areas of Regulatory Compliance, Privacy and general DeFi Security. He holds a
B.Sc. bachelor’s degree and also an M.Sc. degree in Applied Computer Science.
He has performed well in excess of 1,000 smart contract reviews and audits.

3|Page All Rights Reserved

1. Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report, (Source Code); the Source Code compilation, deployment,
and functionality (performing the intended functions). Because the total numbers
of test cases are unlimited, the audit makes no statements or warranties on the
security of the code.

It also cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other statements of the contract. While
we have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contracts.

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have their own vulnerabilities that can lead to hacks. Thus, the audit
can’t guarantee explicit security of the audited smart contracts.

4|Page All Rights Reserved

2. Introduction

Mr. Kishan Patel (Auditor & Consultant) was contacted by Bluegrace Energy
Bolivia - BGEB. (Customer) to conduct a Smart Contracts Code Review and
Security Analysis. This report presents the findings of the security assessment of
Customer's smart contracts and its code review conducted between 11/12/2025 —
12/12/2025.

The project has 1 file. It contains approx. 307 lines of Solidity code. All the
functions and state variables are well commented on using the NATSPEC
documentation, but that does not create any vulnerability.

3. Project information

Token Name Bluegrace Amazon Carbon
Token Symbol BGACT

Platform Binance smart chain
Order Started Date 11/12/2025

Order Completed Date 12/12/2025

5|Page All Rights Reserved

4. List of attacks checked

e Over and under flows

e Short address attack

e Visibility & Delegate call

e Reentrancy/ The DAO hack

e Forcing BNB to a contract

e Timestamp Dependence

e (Gas Limitand Loops

e DoS with (Unexpected) Throw

e DoS with Block Gas Limit

e Transaction-Ordering Dependence
e Byte array vulnerabilities

e Style guide violation

e Transfer forwards all gas

e ERC20 API violation

e Malicious libraries

e Compiler version not fixed

e Unchecked external call - Unchecked math
e Unsafe type inference

6|Page All Rights Reserved

5. Severity Definitions

Risk

Level Description

Critical

Critical vulnerabilities are usually
straightforward to exploit and can lead to
tokens loss etc.

Medium

Medium-level vulnerabilities are important
to fix; however, they can’t lead to tokens
lose

Low

Low-level vulnerabilities are mostly
related to outdated, unused etc. code
snippets, that can’t have significant impact
on execution

7|Page All Rights Reserved

6. Good Coding Standards

e Good, required condition in functions:-

o Filename: ERC20.sol
o Here the smart contract checks that sender and recipient addresses are valid.

_transfer(sender, recipient,
(sender != @), "ERC20: transfer from the zero add

(recipient !I= @), "ERC20: transfer to the zero ad

o Here the smart contract is checking that account address is valid.

_mint(account, amount) {
(account != @), "ERC20: mint to the zero address'

o Here the smart contract is checking that account address is valid.

_burn(account, amount) {
(account != @), "ERC20: burn from the zero addreg

o Here smart contract is checking that owner and spender addresses are valid.

_approve(owner, spender, amount)
(owner != @), "ERC20: approve from the zero addre
(spender != @), "ERC20: approve to the zero addre

o Filename: TeamToken.sol

o Here the smart contract is checking that owner, feeWallet addresses are
valid, decimal is between 8 to 18. Supply is above 0.

name,

symbol,
decimals,
supply,

owner,
feeWallet

checkIsAddressValid(owner) checkIsAddressValid(feeWallet)
decimals >=8 && decimals <= 18, "[Validation] Not valid
supply > @, "[Validation] inital supply should be greateg

8|Page All Rights Reserved

7. Critical vulnerabilities in code

e No Critical vulnerabilities found

8. Medium vulnerabilities in code

e No Medium vulnerabilities found

9. Low vulnerabilities in code

9.1. Suggestions to add additional code validations:-

=> Have implemented the required validation in the

contract.

=> There are potentially some basic additional

improved validation and security of code to be made.

=> Note: These are all just suggestions and it is not related to any programming bug.

o Function: - _approve

_approvel(owner, spender, amount)

(owner != @), "ERC2@8: approve from the zero addre
(spender != @), "ERC20: approve to the zero addre

e Here in _approve functions smart contract can check that
owner has sufficient balance to provide allowance to sender.

9|Page All Rights Reserved

10. Summary

e Number of problems in the smart contract as per severity level

Critical Medium Low

0 0 1

According to the assessment, the smart contract code is well secured. The code is
written with all validation, and all security is implemented. Code is performing
well and there is no way to steal funds from this contract.

e Good Positive Point: Code, performance and quality are good. All kinds of
necessary validation are added into smart contract, and all validations are
working as expected.

e Suggestions & Comments: Implement suggested code validations.

10|Page All Rights Reserved

Addendum: Contract Self-Assessment & Technical Disclosure

This addendum is provided as a self-assessment for informational purposes only and does not
replace an independent third-party security audit.

1. Source Code Transparency

The smart contract is open-source and published under the MIT license, as declared via the
SPDX license identifier within the source code. The contract source code is publicly available
and verifiable on BscScan.

2. Bytecode Verification

The deployed contract bytecode exactly matches the bytecode of a previously verified contract
on BscScan:

0xe29046a93498b3676caac9a6c81911b5009bc0da

This confirms that the deployed contract executes the same compiled logic as the verified
source code, with no modifications or hidden behavior introduced at deployment.

3. Contract Design Characteristics

Based on a manual review of the verified source code:
« The contract implements standard ERC-20 functionality using well-established libraries
« No proxy patterns, upgradeability mechanisms, or delegatecall usage are present
« No dynamic code execution or obfuscation techniques are used
« Any privileged or owner-restricted functions are explicitly defined and visible in the
source code

4. Risk Scope Statement

This self-assessment confirms code transparency and structural simplicity but does not
guarantee the absence of vulnerabilities under all conditions, nor does it replace a professional
third-party security audit.

1l1|Page All Rights Reserved

